

Electromagnetic Fundamentals 2ndYear Communications (2016-2017)

Sheet 3

- 1 (a) What is meant by the gradient of a scalar field ?
 - (b) Derive an expression for it to explain (a)
- 2 Show that the gradient of scalar field f(x, y, z), f(x, y, z) = x + y is normal to lines of constant f.

3 Determine the rate of change of the scalar field $f(x, y, z) = xy + 2z^2$ at p (1,1,1) in the direction of the vector $\bar{a}_x - 2\bar{a}_y + \bar{a}_z$

4 Determine the gradient of the following scalar fields :

(a) f = 5x + 10xz - xy + 6(b) $f = 2 \sin \phi - rz + 4$ (c) $f = 2r \cos \theta - 5\phi + 2$

5 Consider the scalar field of the potential V is give by $V = 2x^2y - 5z$. Show that the vector field $\overline{F} = \nabla V$ is a conservative field or not along any closed path

6 Show that $\bar{F}(r,\theta,\phi) = \frac{k}{r^2} \bar{a}_r$ is a conservative field for any closed contour C.

7 Compute the line integral of $\overline{F} = \nabla f$ for f = 2x + yz - xy from $P_1(1, -1, 1)$ to $P_2(0,0,0)$ along paths consists of

(a) a straight line between P_1 and P_2

(b) straight line segments connecting P_1 to (1, -1, 0) to (1, 0, 0) to P_2

Comment on your results .