Electromagnetic Fundamentals $2^{\text {nd }}$ Year Communications
(2016-2017)

Sheet 3

1 (a) What is meant by the gradient of a scalar field ?
(b) Derive an expression for it to explain (a)

2 Show that the gradient of scalar field $f(x, y, z), f(x, y, z)=x+y$ is normal to lines of constant f.

3 Determine the rate of change of the scalar field $f(x, y, z)=x y+2 z^{2}$ at $\mathrm{p}(1,1,1)$ in the direction of the vector $\bar{a}_{x}-2 \bar{a}_{y}+\bar{a}_{z}$

4 Determine the gradient of the following scalar fields:
(a) $f=5 x+10 x z-x y+6$
(b) $f=2 \sin \phi-r z+4$
(c) $f=2 r \cos \theta-5 \phi+2$

5 Consider the scalar field of the potential V is give by $V=2 x^{2} y-5 z$. Show that the vector field $\bar{F}=\nabla V$ is a conservative field or not along any closed path

6 Show that $\bar{F}(r, \theta, \phi)=\frac{k}{r^{2}} \bar{a}_{r}$ is a conservative field for any closed contour C .

7 Compute the line integral of $\bar{F}=\nabla f$ for $f=2 x+y z-x y$ from $P_{1}(1,-1,1)$ to $P_{2}(0,0,0)$ along paths consists of
(a) a straight line between P_{1} and P_{2}
(b) straight line segments connecting P_{1} to $(1,-1,0)$ to $(1,0,0)$ to P_{2}

Comment on your results .

